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Abstract

We present here an analysis, based on Abstract Interpretation [7], obtained by defining a finite computable
approximation of the causal semantics proposed in [4] for the Mate/Bud/Drip (MBD) Brane Calculus [6]. The
causal semantics in [4] is able to address different kinds of causal dependencies: structural, synchronisation and
the so-called environment causality. Our analysis, being a safe (over)-approximation of such causal semantics,
besides modelling all possible evolutions of the system, can be used to formally prove causal properties among
membrane interactions.

1 Introduction

Understanding the causal relationships among the actions performed by a process is a
relevant issue for all process algebras used in Systems Biology, for determining which
events are necessary for another event to occur. We could benefit from this kind of
information in several ways, for instance, for determining the order of some events thus
limiting the size of the system to be explored. When studying a particular biological
phenomenon, this would allow to only analyse the events that may have an impact on
the phenomenon in hand. In drug research, for example, the study of causal relations can
help in characterizing the relationships amongst molecules in a biochemical interaction
network. This information can be exploited for determining the chemical species that are
involved in causing the phenomenon of interest thus identifying possible drug targets.

Among the different process algebras proposed for Systems Biology, Brane calculus
[6] is able to describe the behaviour of dynamically nested membranes and have resulted
particularly useful for modelling and reasoning about a large class of biological systems,
such as the one of the eukaryotic cells that, differently from the prokaryotes, possesses
a set of internal membranes. For these reasons, in her seminal work [4] Busi proposes a
causal semantics for the Mate/Bud/Drip (MBD) fragment of Brane Calculus to formally
address different kinds of causal dependencies: the standard structural and synchronisa-
tion causality, arising from the prefix structure of terms and from the synchronisation of
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complementary actions, and the environment causality related to the membrane structure
and due to the MBD primitives. However, the introduction of annotations on causes into
the standard semantics limits its practical application for the investigation of the causal
dependencies arising in biological systems. Actually, the transition system enriched with
causal information is generally quite huge (or even infinite).

In this context, resorting to static analysis techniques is a typical way to extract
information on the run-time behaviour by reducing the computational cost of dynamic
techniques, particularly high when dealing with the intrinsic complexity of biological
systems. Pushing forward some ideas developed in [3], we propose here an analysis for
MBD, obtained by applying Abstract Interpretation (AI) [7] techniques. The analysis
has polynomial complexity and is based on the definition of an abstract version of the
causal semantics of [4]. The analysis of a system provides approximate information on all
derivatives of the initial system and a description of the set of possible causal dependencies
among reduction steps. Being a safe over-approximation of the causal behaviour, our
analysis can be applied for proving that a reduction step does not depend on another one.

Note that addressing causality is generally a hard task. The analyses presented in
[16,10,2,17] predict over-approximate information on all the derivatives of the initial sys-
tem. These techniques guarantee invariant properties, showing that certain events will
not happen in each state of the transition system, but cannot capture causal properties.
The first attempt in this direction is made in [18], where a contextual CFA for Bioambi-
ents [21] is introduced and in [19] where a pathway analysis is exploited for investigating
causal properties. In [3], the contextual CFA for MBD is able to capture some kind of
causal dependencies, giving some causal structure to the usually flat CFA results. Causal-
ity and temporality aspects in Bioambients are addressed by the analyses introduced in
[11,12], based on AI techniques. This approach is more expensive from a computational
point of view and, as the one in [19], relies on the abstraction of the transition system.
There are other biologically-oriented calculi potentially of interest for our approach, such
as an extension [15] of κ-calculus [9], the Calculus of Looping Sequences [1] and Beta
Binders [20], whose causality issues have been addressed in [14], starting from [8]. A nice
survey on calculi for biology can be found in [13].

The rest of the paper is organised as follows. We present, in Section 2, the standard
MBD semantics, in Section 3, the causal semantics for MBD, while in Section 4, we
introduce the analysis. For lack of space, we present the formal definitions for MBD
without replication and we briefly discuss in Section 5 the extensions required for the full
calculus. Some concluding remarks can be found in Section 6.

2 An overview on MBD Brane Calculus

The actions of the MBD fragment of Brane Calculi [6] are inspired by membrane fusion,
called mating, and splitting, called dripping/ budding, when splitting off one/zero internal
membrane, respectively. We introduce the syntax and the semantics for MBD, considering
a labelled version of the calculus. As usual in static analysis, labels are exploited in the
definition of the analysis (presented in Sect. 4) and do not affect the dynamic semantics
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P,Q ::= � | P ◦Q | σLP MΓ systems Sys

σ, τ ::= 0 | σ|τ | aλ.σ membrane processes Proc

a, b ::= maten | maten | budn | budn(σ) | drip(σ) actions Act

P̃ , Q̃ ::= � | P̃ ◦ Q̃ | σ̃LP̃ MΓ systems with causes S̃ys

σ̃, τ̃ ::= 0 | σ̃|τ̃ | (K, I,E) :: aλ.σ processes with causes P̃roc

Table 1
Syntax of Labelled MBD (above) and of MBD with Causes (below).

of the calculus. As already mentioned, we consider the calculus without replication.

A membrane system consists of nested membranes, where each membrane is associated
to a membrane process. The syntax of labelled MBD is described in the upper part of
Tab. 1, with n taken from a countable set N of names, and where we write P ∈ Sys for
systems, σ ∈ Proc for membrane processes, and a ∈ Act for actions. Each membrane is
annotated with a membrane label Γ ∈ L̂abM and each action with a process label λ ∈ LabP .

We therefore need two distinct sets of labels: the set of process labels LabP , ranged
over by α, β . . ., and the set of membrane labels L̂abM, ranged over by Γ, ∆, ..., that, given
a set of basic labels LabM is defined as the least set s.t.: (i) LabM ⊆ L̂abM; and (ii) if
Γ,∆ ∈ L̂abM and λ, µ ∈ LabP , then mate(Γ,∆, λ, µ), bud(Γ,∆, λ, µ), drip(Γ, λ) ∈ L̂abM.

We comment on the primitives specific for MBD, as the other constructs are standard
in process calculi. The system σLP MΓ describes a membrane, decorated by the label Γ, that
contains the system P and performs the membrane process σ, describing its interaction
capabilities. The construct aλ.σ defines a sequential process that executes an action a,
decorated by λ, and then behaves as the process σ. Here a denotes an action (or co-
action) for fusion or splitting. We adopt standard syntactical abbreviations, like aλ for
aλ.0, LP MΓ for 0LP MΓ, and σLMΓ for σL�MΓ.

Labels will be also exploited in our causal MBD semantics (in Sect. 3): in particular,
the process labels related to the actions involved in each reaction are used to generate
the fresh cause name associated with the corresponding reduction step. To this aim, we
require that systems are well-labelled, i.e., that all the process labels occurring in a system
are distinct. In the following, we consider only well-labelled systems and processes.

(Par)
P → Q

P ◦R→ Q ◦R (Brane)
P → Q

σLP MΓ → σLQMΓ
(Struct)

P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q
P → Q

(Mate) mateλn.σ|σ0LP M∆ ◦ mate
µ
n.τ |τ0LQMΓ→σ|σ0|τ |τ0LP ◦QMmate(∆,Γ,λ,µ)

(Bud) bud
µ
n(ρ).τ |τ0Lbudλn.σ|σ0LP M∆ ◦ QMΓ→ρLσ|σ0LP M∆Mbud(∆,Γ,λ,µ) ◦ τ |τ0LQMΓ

(Drip) dripλ(ρ).σ|τLP M∆→ρL�Mdrip(∆,λ) ◦ σ|τLP M∆

Table 2
Reduction Semantics for (Well-labelled) MBD.
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The semantics of the calculus is given by the reduction rules in Tab. 2, modulo the
structural congruence rules, here omitted because standard (see [6]). Besides the standard
reduction rule for congruence (Struct), and the contextual rules to propagate reductions
across parallel composition (Par) and membrane nesting (Brane), there are the axioms
specific of the MBD fragment. Rule (Mate) models the fusion of two parallel membranes
labelled by ∆ and Γ that exercise the actions mateλn and mate

µ
n., resp. The membrane

introduced by the fusion takes the label mate(∆,Γ, λ, µ) and is associated to the par-
allel composition of the residual processes of the two membranes. In the rule (Bud) a
membrane with label Γ expels a child membrane labelled by ∆, by performing the ac-
tions bud

µ
n(ρ) and budλn, resp. The membrane labelled by ∆ is wrapped inside a new

membrane with label bud(∆,Γ, λ, µ) and associated to the process ρ. Finally, in the rule
(Drip), a membrane labelled by ∆, by performing the action dripλ(ρ), creates a new
empty membrane labelled by drip(∆, λ) and associated to the process ρ.

3 Causal Semantics for MBD

In [4], Busi describes and classifies different kinds of causal dependencies in MBD. As
in all process algebras, there is the standard structural causality arising from the prefix
structure of terms and the one, synchronisation causality, arising from the synchronisa-
tion of complementary actions. Furthermore, there are the causal dependencies coming
from the membrane structure and due to the MBD primitives. In particular, the mate re-
action introduces a quite subtle kind of causality, called environment causality. Actually,
after the fusion of two membranes the environment is modified so that the interaction
possibilities of their child membranes may result increased.

More in details, after the fusion of two membranes it is possible that: (i) two child
membranes become siblings and, therefore, can perform a mate that was not possible
before; and (ii) a child membrane moves out from the parent membrane by performing
a bud reaction that was not possible before. Hence, such interactions of the child mem-
branes causally depend on the mate realised by the parent membranes. By contrast, a
drip reaction realised by a child membrane can be considered causally independent from
the mate operation, because it can be executed regardless of the fact that the fusion of
the parent membranes has been performed.

The causal semantics for MBD in [4], is based on the idea of annotating each reaction
step with the following causal information:

• a fresh name k in a set of causes K that represents the name associated to the reaction;

• a set of causes H ⊆ K that includes the names associated to the already occurred
reactions, that represent the immediate causes of the current reaction.

Note that the set of all the causes can be obtained by transitive closure of the immedi-
ate causal relation. The syntax of the calculus is enriched with causal information, to
propagate the cause name associated to each reduction step to the next interactions.

We simplify and adapt the causal semantics in [4], to make simpler the definition of
its abstract version. The main difference is that we obtain the cause name k associated to
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a reaction step from the process labels related to the involved actions. The well-labelling
condition guarantees that k is fresh.

We define the systems with causes by introducing information on causes in labelled
systems. We first introduce our version of the set of cause namesK = LabP∪(LabP×LabP)
and a related set of decorated causesK± = {kx | k ∈ K, x ∈ {+,−}}. 1 Sets Yi of decorated
causes can be combined with the operator ⊗ : ℘(K±)× ℘(K±)→ ℘(K), as follows:

Y1 ⊗ Y2 = {k | kx ∈ Y1, k
y ∈ Y2, with x, y ∈ {+,−}, x 6= y}

The syntax of systems with causes S̃ys and of processes with causes P̃roc is defined in the
lower part of Tab. 1, where (K, I,E) ∈ K̂ with K̂ = ℘(K)× ℘(K±)× ℘(K±). The causal
information, put in front of each sequential processes, is given by the triple (K, I,E). The
component K represents the set of immediate causes of the process aλ.σ, while compo-
nents I and E report sets of decorated causes representing its internal and external causes,
resp.. Decorated causes are specifically introduced to handle environment causality and
thus to treat the causal dependencies originated by the fusion of two membranes. More
in details, they are used to assign the cause associated to the mate of two membranes to
the future mate and bud interactions of the child membranes, provided that such inter-
actions have become possible as a consequence of the fusion of the parent membranes.
Intuitively, in a decorated cause hx the cause name h refers to a mate reaction that has
previously occurred, while the sign x ∈ {−,+} is used to distinguish one membrane that
has merged from the other one. Moreover, an internal cause hx ∈ I shows that the mem-
brane associated to the process aλ.σ was a child membrane of the one related to x that
has realised the mate associated to h. Similarly, an external cause hx ∈ E shows that the
process aλ.σ comes from the one related to x that has realised the mate associated to h.

For simplicity, we omit the empty triple (∅, ∅, ∅) in front of sequential processes. By
abuse of notation, a labelled process (resp. system) can be interpreted, when required, as
a process with empty causes (resp. a system with empty causes).

The causal semantics is given in terms of the causal transition relation
k;H−→, where P̃

k;H−→
Q̃ denotes that the system P̃ performs an action, associated with the fresh cause name k ∈
K, and with the set of immediate causes H ⊆ K. We first introduce an auxiliary operator
that distributes the causal information on sequential subprocesses and on systems.

Definition 1. Given a triple (K, I,E) ∈ K̂, the operator (K, I,E) . is inductively defined

on P̃roc and S̃ys as follows:
(K, I,E) . 0 = 0 (K, I,E) . � = �
(K, I,E) . σ̃|τ̃ = (K, I,E) . σ̃ | (K, I,E) . τ̃ (K, I,E) . (P̃ ◦ Q̃) = (K, I,E) . P̃ ◦ (K, I,E) . Q̃

(K, I,E) . (K′, I ′, E′) :: aλ.σ = (K, I,E) . σ̃LP̃ MΓ = ((K, I,E) . σ̃)LP̃ MΓ

(K ∪K′, I ∪ I ′, E ∪ E′) :: aλ.σ

The causal transition system is defined up to causal structural congruence (that is the
expected one) and to causal reduction rules, obtained by decorating the rules of Tab. 2
with information on causes. Tab. 3 presents the causal version of the MBD axioms and

1 For simplicity, when a set of (decorated) causes is a singleton, we omit the surrounding parentheses.
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omits the obvious adaptation of the rules (Par), (Brane) and (Struct) in Tab. 2.

P 

(K1,I1,E1) I> matenλ.σ 

σ0 

Δ 

Q 

(K2,I2,E2) I> matenμ.τ 

τ0 

Γ 

(∅, (λ,μ)+, ∅) I> P 

((λ,μ),I1,E1) I> σ |((λ,μ),I2,E2) I> τ 

(∅, ∅, (λ,μ)+)  I> σ0 |  
(∅, ∅, (λ,μ)‐)   I> τ0 

mate(Δ,Γ,λ,μ) 

°  (∅, (λ,μ)‐, ∅) I> Q 

(λ,μ); K1  ∪  K2 ∪  (I1 ⊗ I2)  

They become siblings a@er the mate (λ,μ) 

They become parent‐child a@er the mate (λ,μ) 

Fresh name cause  
associated to mate 
synchronisaGon 

h in (I1 ⊗ I2) if the two  
membranes have  
become siblings a@er  
the mate h 

Fig. 1. Illustration of the (Matec) rule (where tildes are omitted for simplicity in systems and processes.)

• In the rule (Matec) (illustrated in Figure 1) two membranes (labelled by ∆ and Γ
resp. 2 ) realise a fusion, synchronising on co-actions mateλn and mate

µ
n. The reduction

step is associated to the fresh cause name k derived from the labels λ and µ, and
has in the set of immediate causes the immediate causes of both actions, and all the
causes h ∈ I1 ⊗ I2, derived by suitably combining the internal causes of both actions:
if hx ∈ I1 and hy ∈ I2, with x 6= y, then the two membranes have become siblings as a
consequence of the mate reaction h. Therefore, the mate reaction k causally depends
on reaction h.

The information on causes is propagated into the resulting system as follows. Both
continuations of mate and co-mate have k as immediate cause and inherit both internal
and external causes from the previous action. Both internal and external causes related
to k are introduced in order to assign cause k to the future mate and bud interactions of
the child membranes. More in details, the child membranes coming from the membrane
∆ (resp. Γ) take internal cause k+ (resp. k−). Finally, external causes are assigned to
the remaining processes coming from one of the two merging membranes. Again, cause
k+ is propagated in the process coming from the membrane ∆, while k− is propagated
in the process coming from the membrane Γ.

2 For brevity, from now on, we will write membrane ∆ instead of membrane labelled ∆. Similarly, we
will write reaction k instead of reaction associated to k
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• In the rule (Budc) a membrane Γ expels a child membrane ∆, by synchronising on
co-actions budλn and bud

µ
n(ρ). The reduction step is associated to the fresh cause name

k, derived as in rule (Matec). The set of immediate causes contains the immediate
causes of both actions, and the causes h ∈ E1 ⊗ I2 that are derived by combining the
external causes of the cobud and the internal causes of the bud action. Actually, if
hx ∈ E1 and hy ∈ I2, with x 6= y, then the movement of the child membrane out from
the parent membrane has become possible after the execution of the mate reaction h.
Hence the bud reaction associated to k causally depends on the mate h. Propagation
of causes is as follows. The continuations of the two actions acquire causes as before.
The new membrane that encloses the membrane ∆ is associated to the process ρ, that
has k as immediate cause and inherits, from the cobud, the internal causes I1, needed
to control the possible future mate interactions of the new membrane.

• In the rule (Dripc) a membrane ∆ splits off an empty membrane, performing an action
dripλ(ρ). The reduction step is associated to the fresh cause name λ and to the set
of immediate causes of the drip action. Differently from the previous cases, a drip
reaction is causally independent from the previously mate reactions realised by the
parent membranes. Causes are propagated as in rule (Budc).

(Matec)((K1, I1, E1) :: mateλn.σ)|σ̃0LP̃ M∆ ◦ ((K2, I2, E2) :: mateµn.τ)|τ̃0LQ̃MΓ k; K1 ∪ K2 ∪ (I1⊗I2)−−−−−−−−−−−−−−−→

((k, I1, E1) . σ)|((∅, ∅, k+) . σ̃0)|((k, I2, E2) . τ)|((∅, ∅, k−) . τ̃0)L(∅, k+, ∅) . P̃ ◦ (∅, k−, ∅) . Q̃MΨm

(Budc) ((K1, I1, E1) :: bud
µ
n(ρ).τ)|τ̃0L((K2, I2, E2) ::budλn.σ)|σ̃0LP̃ M∆ ◦ Q̃ MΓ k; K1 ∪ K2 ∪ (E1⊗I2)−−−−−−−−−−−−−−−→

((k, I1, ∅) . ρ)L ((k, I2, E2) . σ)|σ̃0LP̃ M∆ MΨb ◦ ((k, I1, E1) . τ)|τ̃0LQ̃MΓ

(Dripc) ((K, I,E) :: dripλ(ρ).σ)|τLP̃ M∆ λ; K−−−→ ((λ, I, ∅) . ρ)L�MΨd ◦ ((λ, I, E) . σ)|τ̃LP̃ M∆

where k = (λ, µ),Ψm = mate(∆,Γ, λ, µ),Ψb = bud(∆,Γ, λ, µ), and Ψd = drip(∆, λ)

Table 3
MBD Axioms with Causes.

The causal semantics of a system P is defined as a Labelled Transition System (LTS)
obtained by transitive closure from the system with empty causes, corresponding to P .

We present some illustrative examples for the causal semantics, taken from [4]. We
focus on environment causality, discussing the effect of a mate reaction on the future
interactions (mate and bud) of the child membranes. For a more precise approximation,
we assume that in the initial systems all membrane labels belong to LabM.

Example 1. We consider the system

P1 = mateνnLmateµm|mateζoLMΘ ◦ mateβo LMΦM∆ ◦ mateδnLmate
λ
mLMΨMΓ

composed by the two parallel membranes ∆ and Γ. The first membrane contains two
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child membranes Θ and Φ, while the second one contains the membrane Ψ. Initially, the
two top-level membranes are willing to realise a mate reaction on n (with corresponding
actions maten and maten), while the two membranes Θ and Φ are willing to realise a
mate on o. Analogously, the membranes Θ and Ψ want to realise a mate on m. It should
be clear that the mate reactions on n and on o do not causally depend one on the other,
because the membranes Θ and Φ are initially siblings inside the membrane ∆. By contrast,
the mate reaction on m causally depends on the mate on n, because the membranes Θ
and Ψ become siblings only after the fusion of the parent membranes.

The causal semantics of the system P1 reflects this behaviour, as shown by the following
computation. The other computations are similar.

P1
h1;∅−−−→ L((∅, h+

1 , ∅) :: mateµm|(∅, h+
1 , ∅) :: mateζo)LMΘ ◦ (∅, h+

1 , ∅) :: mateβo LMΦ ◦ (∅, h−1 , ∅) :: mateλmLMΨMΠ

h2;{h1}−−−−−→ L((∅, h+
1 , h

+
2 ) :: mateζoLMΠ1 ◦ (∅, h+

1 , ∅) :: mateβo LMΦMΠ h3;∅−−−→ LLMΠ2MΠ where

h1 = (ν, δ), h2 = (µ, λ), h3 = (ζ, β), Π = mate(∆,Γ, ν, δ), Π1 = mate(Θ,Ψ, µ, λ), Π2 = mate(Π1,Φ, ζ, β)

• The mate reaction on n is associated to the cause name h1 and has an empty set
of immediate causes. Internal causes related to h1 are propagated into the processes
associated to the child membranes of the membrane Π resulting from the fusion. In
particular, the membranes Θ and Φ acquire internal cause h+

1 , while the membrane Ψ
acquires internal cause h−1 .

• The mate reaction on m is associated to h2 and has {h1} as set of immediate causes,
derived by combining the internal causes of the mate and co-mate (h+

1 and h−1 , resp.).
The sign of decorated causes shows that the two membranes have become siblings as a
consequence of the mate on n.

• The mate reaction on o is associated to h3 and has an empty set of immediate causes.
Differently from the previous case, the mate and the co-mate carry the same internal
cause h+

1 revealing that the two membranes were siblings also before the mate on n.

Example 2. We consider the system

P2 = mateνn|bud
λ
m(ρ1)LbudµmLMΘ ◦ budζoLMΦM∆ ◦ mateδn|bud

β
o (ρ2)LMΓ

As in Example 1 the system is composed by two parallel membranes ∆ and Γ that are
ready to interact, performing a mate reaction on n. In this case, the membrane ∆ con-
tains two child membranes Θ and Φ that are willing to realise a bud reaction. The child
membrane Θ can perform an action budm, while the child membrane Φ can perform an
action budo. The membrane ∆ offers the co-action budm(ρ1) so that the bud reaction on
m can be performed independently from the mate on n. By contrast, the membrane Φ
cannot realise the bud before the mate of the parent membranes. Hence, the bud reaction
on o causally depends on the mate on n.
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The behaviour of the system is reflected by the causal semantics, as shown below.

P2
h1;∅−−−→ (∅, ∅, h+

1 ) :: bud
λ
m(ρ1)|(∅, ∅, h−1 ) :: bud

β
0 (ρ2))L(∅, h+

1 , ∅) :: budµmLMΘ ◦ (∅, h+
1 , ∅) :: budζoLMΦMΠ

h2;{h1}−−−−−→ (h2, ∅, ∅) :: ρ2LLMΦMΨ1 ◦ (∅, ∅, h+
1 ) :: bud

λ
m(ρ1)L(∅, h+

1 , ∅) :: budµmMΠ

h3;∅−−−→ (h2, ∅, ∅) :: ρ2LLMΦMΨ1 ◦ (h3, ∅, ∅) :: ρ1LLMΘMΨ2 ◦ LMΠ where

h1 = (ν, δ), h2 = (ζ, β), h3 = (µ, λ), Π = mate(∆,Γ, ν, δ), Ψ1 = bud(Φ,Π, ζ, β), Ψ2 = bud(Θ,Π, µ, λ)

• The mate reaction on n is as in Example 1. Internal and external causes related to
h1 are propagated into the resulting system. More precisely, the processes associated to
the membranes Θ and Φ that were child membranes of ∆ acquire internal cause h+

1 . In
addition, the residual processes associated to the two membranes Γ and ∆ acquire external
causes. The processes in parallel with the mate take h+

1 , while the ones in parallel with
the co-mate take h−1 .

• The bud reaction on o is associated to h2 and has set of immediate causes {h1}, derived
by combining the external causes of the co-bud and the internal causes of the bud (h+

1 and
h−1 resp.). The decorated causes show that the bud reaction on o has become possible as a
consequence of the mate on n.

• The bud reaction on m is associated to h3 and has an empty set of immediate causes.
Differently from the previous case, both the bud and the co-bud carry the same decorated
cause h+

1 , showing that the bud reaction on m was possible also before the mate on n.

4 The Abstraction

The aim of the analysis is to compute an over-approximation of all derivatives of a
system with causes, together with an over-approximation of the set of causes associated
to each reaction step. Following the AI approach the analysis is based on the definition
of an abstract version of the causal semantics. This semantics is given by transitions
among abstract states that report approximate information on systems with causes. More
precisely, an abstract state provides a description of the possible hierarchical structure of
membranes and of the processes with causes, associated to each membrane.

Abstract Labelled MBD and MBD with Causes. The approximation is based on
an abstraction of membrane labels that is necessary to guarantee that the set of labels
generated in the abstract causal semantics is finite. We introduce the abstract version
of the set of basic membrane labels Lab◦M = LabM ∪ {@}, with a special symbol @
representing the outermost membrane. Then we derive the set of abstract membrane
labels L̂ab

◦
M, ranged over by Γ◦, ∆◦, ..., defined as the least set s.t.: (i) Lab◦M ⊆ L̂ab

◦
M;

and (ii) if Γ◦,∆◦ ∈ L̂ab
◦
M then mate(Γ◦,∆◦), bud(Γ◦,∆◦), drip(Γ◦) ∈ L̂ab

◦
M.

The approximation introduced by L̂ab
◦
M is not enough since the interactions between

membranes may introduce arbitrarily nested membrane labels such as, for example,
mate(bud(drip(Γ◦),∆◦),Ψ◦). We therefore introduce a further abstraction by consid-
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ering the set of abstract membrane labels parametric w.r.t. d with d ∈ N+ as,

L̂ab
d

M = {∆◦|∆◦ ∈ L̂ab
◦
M and depth(∆◦) ≤ d} ∪ {mate(>,>), bud(>,>), drip(>)}

where depth(∆◦) gives the maximal number of nested constructors mate, bud and drip

occurring in ∆◦, e.g. depth(mate(bud(drip(Γ◦),∆◦),Ψ◦)) = 3. The set L̂ab
d

M contains
all the abstract membrane labels with depth no greater than d and the new membrane
labels: mate(>,>), bud(>,>) and drip(>) that approximate all the membrane labels of
the same form having depth greater than d.

The relation between membrane labels L̂abM and abstract membrane labels L̂ab
d

M
can be formalised by introducing the abstract version ∆• of a label ∆, as follows:

• if ∆ ∈ LabM then ∆• = ∆;

• if ∆ = #(Γ,Ψ, λ, µ) with # ∈ {mate, bud}, then ∆• = #(Γ•,Ψ•) if depth(#(Γ•,Ψ•)) ≤
d; ∆• = #(>,>) o.w.;

• if ∆ = drip(Γ, λ) then ∆• = drip(Γ•) if depth(drip(Γ•)) ≤ d; ∆• = drip(>) o.w.

The abstraction of membrane labels induces a corresponding abstraction on labelled
systems and on systems with causes. We omit the syntax of abstract labelled systems Sys◦

and of abstract systems with causes S̃ys
◦
, obtainable from the corresponding concrete

ones (see Tab. 1), by replacing membrane labels with abstract membrane labels. We

write P ◦ ∈ Sys◦ and P̃ ◦ ∈ S̃ys
◦

for abstract labelled systems and systems with causes,
resp.. The abstract version P • (resp. P̃ •) of a labelled system P (resp. of a system with
causes P̃ ) is obtained by substituting each membrane ∆ with its abstract version ∆•.

Abstract States. An abstract state represents approximate information about systems
with causes and reports information on the parent-child relation between membranes and
a description of the processes with causes associated to each membrane. Formally, it is
defined as a function that assigns to each abstract membrane label: (a) a set of abstract
membrane labels representing the membranes that may be child membranes; and (b) a
set of sequential processes with causes representing the process with causes that may be
associated to the membrane. The component (b) is described by a configuration.

Definition 2 (Configurations and Abstract States).

• Let C◦ ⊆ P̃roc s.t., for each σ̃ ∈ C◦, σ̃ = (K, I,E) :: aλ.τ . We say that C◦ is a
configuration iff, for each (K1, I1, E1) :: aλ.τ, (K2, I2, E2) :: aλ.τ ∈ C◦ then K1 = K2,
I1 = I2 and E1 = E2. We use C◦ for the set of configurations.

• An abstract state is a partial function S◦ : L̂ab
d

M → ℘(L̂ab
d

M)×C◦. We use S◦ for the
set of abstract states.

Using a standard notation for partial functions, an abstract state S◦ can be alterna-
tively described by a set of pairs:

⋃
Γ◦∈dom(S◦){(Γ◦, (M◦, C◦))| S◦(Γ◦) = (M◦, C◦)}. The

information (Γ◦, (M◦, C◦)) associated to Γ◦ provides the set of abstract membrane labels
M◦ and the configuration C◦.

In order to compare approximations in terms of precision, we assume two partial

10
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orders on configurations C◦ (denoted by vC) and on abstract states S◦ (denoted by v◦).
The approximation orders can be defined in a standard way, based on set inclusion and
reasoning component-wise and point-wise. We also consider the corresponding least upper
bounds (l.u.b.), denoted by tC and t◦.

We can now explain the representation of an abstract system with causes in terms
of an abstract state. The relation is formally represented by the translation function

t◦ : L̂ab
d

M × S̃ys
◦ → S◦, defined in Tab. 4, that returns an abstract state describing

an abstract system with causes P̃ ◦ w.r.t. an abstract membrane ∆◦ (representing the
enclosing membrane). The function uses, in turn, a translation function on processes

with causes t◦ : P̃roc→ C◦ that returns a configuration.

t◦(∆◦, �) = {(∆◦, (∅, ∅))} t◦(∆◦, P̃ ◦ ◦ Q̃◦) = t◦(∆◦, P̃ ◦)t◦ t◦(∆◦, Q̃◦)

t◦(∆◦, σ̃LP̃ ◦MΓ◦) = {(∆◦, ({Γ◦}, ∅))}t◦ t◦(Γ◦, P̃ ◦)t◦ {(Γ◦, (∅, t◦(σ̃)))}

t◦(0) = ∅ t◦(σ̃|τ̃) = t◦(σ̃) tC t◦(τ̃) t◦((K, I,E) :: aλ.σ) = {(K, I,E) :: aλ.σ}

Table 4
Translation Functions for Abstract Systems and Processes with Causes.

It is immediate to define a corresponding function that relates systems with causes
and abstract states, giving the abstract state that is the best approximation. We define
an abstraction function αS̃ys : S̃ys→ S◦ s.t. for P̃ ∈ S̃ys, αS̃ys(P̃ ) = t◦(@, P̃ •).

Abstract LTS. The abstract causal semantics is given in terms of the causal transition

relation
k;H−−→◦ among abstract states. The abstract transitions are obtained by intro-

ducing for abstract states inference rules that model the possible mate, bud and drip
interactions between membranes. To obtain a more precise approximation of the pos-
sible interactions (specifically in the case of mate), we introduce an additional piece of
information, formalised by a relation between process labels in the set of incompatibility
relations I◦ ⊆ ℘(LabP × LabP). The pair (λ, µ) says that the two sequential processes
aλ.τ and bµ.σ can never occur in parallel on the same membrane, during any possible
execution. The information on incompatible pairs is exploited in the abstract version of
rule mate to determine the set of sequential processes with causes that may be associated
to the membrane resulting from the fusion of two membranes.

For the abstract semantics, we introduce the following auxiliary operators:

parent : S◦ × L̂ab
d
M → ℘(L̂ab

d
M) s.t. parent(S◦,∆◦) = {Γ◦ | S◦(Γ◦) = (M◦, C◦) and ∆◦ ∈M◦}

comp : I◦ × LabP × C◦ → C◦ s.t. comp(R◦, λ, C◦) = {(K, I,E) :: aµ.σ ∈ C◦| (µ, λ) /∈ R◦}

(K, I,E) .C C
◦ = {(K, I,E) . σ̃ | σ̃ ∈ C◦}

(K, I,E) .S (M◦, S◦) =
⊔◦

∆◦∈M◦{(∆◦, (∅, (K, I,E) .C C
◦
1 ))| S◦(∆◦) = (M◦1 , C

◦
1 )}

The first operator returns the set of membrane labels reported as possible parents of an

11
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abstract membrane ∆◦ in an abstract state S◦. The second operator returns the subset
of a configuration C◦ containing the sequential process with causes that are compatible
with a process label λ according to an incompatibility relation R◦. Finally, the last
operators .C and .S propagate the causal information given by a triple (K, I,E) ∈ K̂ to
configurations and to the set of configurations associated to a set of abstract membrane
labels M◦ in an abstract state S◦.

In the abstract inference rules, we write R◦ ` S◦1
k;H−−→◦ S◦2 to denote a transition from

the abstract state S◦1 to the abstract state S◦2 , assuming that R◦ ∈ I◦ is the incompatibility
relation. We focus on the abstract version of the inference rule (Matec) that is presented
in Tab. 5. The rules (Bud◦c) and (Drip◦c) are similarly derived from their concrete versions.

(Mate◦c)

Φ◦ ∈ parent(S◦,∆◦) ∩ parent(S◦,Γ◦), S◦(∆◦) = (M1
◦, C◦1 ), S◦(Γ◦) = (M◦2 , C

◦
2 ),

(K1, I1, E1) :: mateλn.σ ∈ C◦1 , (K2, I2, E2) :: mateµn.τ ∈ C◦2

R◦ ` S◦ k;K1 ∪ K2 ∪ (I1⊗I2)−−−−−−−−−−−−−−→◦ S◦ t◦ {(Φ◦, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (M◦1 ∪M◦2 , C◦))} t◦

(∅, k+, ∅) .S (M◦1 , S
◦) t◦ (∅, k−, ∅) .S (M◦2 , S

◦)

where k = (λ, µ),Ψ◦ = mate(∆◦,Γ◦) if mate(∆◦,Γ◦) ∈ L̂ab
d
M,Ψ

◦ = mate(>,>), otherwise, and

C◦ = t◦((k, I1, E1) . σ) tC (∅, ∅, k+) .C compR◦(λ,C◦1 ) tC t◦((k, I2, E2) . τ) tC (∅, ∅, k−) .C compR◦(µ,C◦2 ).

(Bud◦c)

Φ◦ ∈ parent(S◦,Γ◦),Γ◦ ∈ parent(S◦,∆◦), S◦(Γ◦) = (M1
◦, C◦1 ), S◦(∆◦) = (M◦2 , C

◦
2 ),

(K1, I1, E1) :: bud
µ
n(ρ).τ ∈ C◦1 , (K2, I2, E2) :: budλn.σ ∈ C◦2

R◦ ` S◦ k;K1 ∪K2 ∪ (E1⊗I2)−−−−−−−−−−−−−−→◦ S◦ t◦ {(Φ◦, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (∆◦, t◦((k, I1, ∅) . ρ)))} t◦

{(∆◦, (∅, t◦((k, I2, E2) . σ)))} t◦ {(Γ◦, (∅, t◦((k, I1, E1) . τ)))}

where k = (λ, µ) and Ψ◦ = bud(∆◦,Γ◦) if bud(∆◦,Γ◦) ∈ L̂ab
d
M,Ψ

◦ = bud(>,>), otherwise.

(Drip◦c)

Γ◦ ∈ parent(S◦,∆◦), S◦(∆◦) = (M◦, C◦), (K, I,E) :: dripλ(ρ).σ ∈ C◦

R◦ ` S◦ λ;K−−→◦ S◦ t◦ {(Γ◦, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (∅, t◦((λ, I, ∅) . ρ)))} t◦{(∆◦, (∅, t◦((λ, I, E) . σ)))}

where Ψ◦ = drip(∆◦) if drip(∆◦) ∈ L̂ab
d
M,Ψ

◦ = drip(>), otherwise.

Table 5
Rule (Mate◦c) of the Abstract Causal Semantics.

The Rule (Mate◦c) models the fusion of two membranes (∆◦ and Γ◦) that may synchro-

nise on actions mateλ
◦
n and mate

µ◦

n . This requires that: (i) the abstract membranes ∆◦

and Γ◦ are reported as possible siblings (with common parent represented by membrane
Φ◦); (ii) the configurations C◦1 and C◦2 , describing the processes associated to ∆◦ and Γ◦,
contain the mate and comate actions, resp.. The abstract reaction step is described by a
cause name and by a set of immediate causes computed as in the concrete case.

The resulting abstract state enriches abstract state S◦ with information reporting the
effects of the possible fusion of the two membranes. The membrane that represents the
mate of the two membranes is described by an abstract membrane label Ψ◦, obtained by
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approximating mate(∆◦,Γ◦) according to its depth. The membrane label Ψ◦ is added as a
possible child of the common parent of the two membranes ∆◦ and Γ◦ (i.e. Φ◦). Further,
we need to introduce information on the possible children of the membrane Ψ◦ and on
the set of processes that may be associated to the membrane Ψ◦. More precisely, the
abstract membrane Ψ◦ acquires all the possible child membranes of membranes ∆◦ and
Γ◦. The processes with causes associated to Ψ◦ are described by the configuration C◦ that
contains a set of sequential processes with causes inherited from the configurations of the
membranes ∆◦ and Γ◦. Such a configuration contains the translation of the continuation
of the mate and of the comate actions. In addition, it contains the processes with causes
that may run in parallel with action mateλ

◦
n (resp. mateµ

◦

n ) associated to ∆◦ (resp. to
Γ◦). In both cases, the set of processes is computed from the corresponding configuration
(C◦1 and C◦2 , resp.), by exploiting the information on incompatible pairs of process labels
given by relation R◦. Finally, the cause name k related to the mate and the corresponding
external and internal causes (k+ and k−) are propagated as in the concrete case.

The abstract causal semantics of a system P is defined as an abstract LTS, obtained
by transitive closure from the abstract state αS̃ys(P

•). The abstract transition relation
−→◦ is derived by applying the abstract inference rules w.r.t. the incompatibility relation
rel◦(P •) provided by the function rel◦ : Sys◦ → I◦, presented in Tab. 6. The definition
relies on two related functions rel◦ : Proc◦ → I◦ and rel◦ : Act → I◦. The incompat-
ibility relation is extracted by analysing the syntax of abstract labelled system P • and
guarantees that the property expressed by incompatible pairs of process labels holds for

P and for all derivatives of P . In the following, we indicate with L̃TS◦(P ) the abstract
LTS of system P .

rel◦(�) = ∅ rel◦(0) = ∅
rel◦(Q◦1|Q◦2) = rel◦(Q◦1) ∪ rel◦(Q◦2) rel◦(σ|τ) = rel◦(σ) ∪ rel◦(τ)

rel◦(σLQ◦MΓ◦
) = rel◦(Q◦) ∪ rel◦(σ) rel◦(aλ.σ) = rel◦(a) ∪ rel◦(σ) ∪ {(λ, λ)} ∪ {(λ, µ)|µ ∈ lab(σ)}

where rel◦(a) =

{
∅ if a ∈ {maten, maten, budn},
rel◦(ρ) if a ∈ {budn(ρ), drip(ρ)}.

Table 6
Incompatibility Relation, where lab(σ) stands for the set of process labels occurring in σ.

Causal Analysis. The analysis provides an over-approximation of all derivatives of a
system with causes, together with a description of the possible causal dependencies among
reaction steps. This information is derived from the abstract causal semantics describing
the approximate behaviour of a system. More precisely, the result of the analysis gives
an abstract state and a set of causal dependencies between cause names. The causal
dependencies are formally described by relations in the set of causality relations defined
as D◦ = ℘(K ×K). A pair (k, h) shows that a reaction step associated to the abstract
cause name k may causally depend on a reaction step associated to h. The set of all the
causes associated to a reaction step can be obtained by transitive closure of the immediate
causal relation.
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@ ∆,Γ,Π•

∆ Θ,Φ mateνn

Γ Ψ mate
δ
n

Θ (∅, h+
1 , ∅) :: mateµm, (∅, h+

1 , ∅) :: mateζo

Φ (∅, h+
1 , ∅) :: mateβo

Ψ (∅, h1
−, ∅) :: mateλm

Π• = mate(∆,Γ) Θ,Φ,Ψ,Π•1,Π
•
2,Π

◦
3,Π

◦
4

Π•1 = mate(Θ,Ψ) (∅, h+
1 , h

+
2 ) :: mateζo

Π•2 = mate(Π•1,Φ)

Π◦3 = mate(Θ,Φ) (∅, h+
1 , h

+
3 ) :: mateµm

Π◦4 = mate(Π◦3,Ψ)

Table 7
Abstract State S◦1 of Ex. 1, where h1 = (ν, δ), h2 = (µ, λ), and h3 = (ζ, β).

Definition 3. We define a function A◦ : Sys → S◦ × D◦ such that for P ∈ Sys with

L̃TS◦(P ) = (X◦,−→◦ , αS̃ys(P
•)), A◦(P ) = (t◦S◦∈X◦S◦, closure({(k, h) | h ∈ H, S◦1

k;H−−→◦
S◦2 ∈−→◦ })) 3 .

It can be shown that the analysis is a safe approximation of the causal behaviour.
Intuitively, each derivative of the initial system is safely approximated by the abstract
state and each causal dependency arising in the causal semantics is captured by the
abstract causal dependencies.

We show the application of the analysis to the examples introduced in Sect. 3, assum-
ing that the depth parameter is d = 3.

Example 3. We consider the system commented in Example 1,

P1 = mateνnLmateµm|mateζoLMΘ ◦ mateβo LMΦM∆ ◦ mateδnLmate
λ
mLMΨMΓ

The analysis of P1 is described by the causality relation D◦1 = {(h2, h1)} and by the
abstract state S◦1 illustrated in Tab. 7. The table gives for each abstract membrane label
the set of possible child membranes (on the left) and the configuration (on the right). For
instance the third line must be read as: the membrane Γ may 4 include the membrane Ψ
and it may be associated with the process with empty causes mate

δ
n. The analysis result

allows us to prove that the mate on n and the mate on o do not causally depend on any
other reaction. This is established by the causality relation D◦1 by observing that the mate
on n and on o are associated to cause names h1 and h3, respectively.

Example 4. We consider the system commented in Example 2,

P2 = mateνn|bud
λ
m(ρ1)LbudµmLMΘ ◦ budζoLMΦM∆ ◦ mateδn|bud

β
o (ρ2)LMΓ

The analysis result of P2 is described by the causality relation D◦2 = {(h2, h1)} and by the

3 We use closure(D◦) to indicate the transitive closure of a relation D◦ ∈ D◦.
4 Recall that this is an over-approximation.
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@ ∆,Γ,Π•,Ψ•1,Ψ
•
2,Ψ

◦
3

∆ Θ,Φ mateνn, bud
λ
m(ρ1)

Γ mate
δ
n, bud

β
o (ρ2)

Θ (∅, h+
1 , ∅) :: budµm

Φ (∅, h+
1 , ∅) :: budζo

Π• = mate(∆,Γ) Θ,Φ (∅, ∅, h−1 ) :: bud
β
o (ρ2), (∅, ∅, h+

1 ) :: bud
λ
m(ρ1)

Ψ•1 = bud(Φ,Π•) Φ (h2, ∅, ∅) :: ρ2

Ψ•2 = bud(Θ,Π•) Θ (h3, ∅, ∅) :: ρ1

Ψ◦3 = bud(∆,Θ) Θ (h3, ∅, ∅) :: ρ1

Table 8
Abstract State S◦2 of Ex. 2, where h1 = (ν, δ), h2 = (ζ, β), h3 = (µ, λ).

abstract state S◦2 depicted in Tab. 8. As in Ex. 3, the result allows us to prove that the
mate reaction on n and bud reaction on m do not causally depend on any other reaction.

5 Extensions for Dealing with Replication

The framework proposed here is designed to handle the MBD calculus with replication.
To deal with replication, we need to introduce some modifications in the concrete and
in the abstract semantics. First of all, we need a labelling technique to ensure the well-
labelling condition of systems that is fundamental for generating fresh cause names. This
can be simply obtained by adopting a partitioned set of process labels and by decorating
the copies of a system, introduced by the unfolding of replication, with distinct process
labels belonging to the same partition. Moreover, to guarantee that the analysis can be
computed in a finite number of steps, we need to apply abstraction techniques to process
labels. In particular, the process labels can be simply approximated by considering the
equivalence classes induced by the partition of the set of process labels. The abstraction
of process labels induces, in turn, a corresponding abstraction on labelled process, on
cause names and therefore on process with causes. All the presented technical definitions
can be suitably extended to this more general case.

6 Conclusions

We have presented an analysis based on Abstract Interpretation techniques for approxi-
mating the causal semantics proposed in [4] for the MBD fragment of Brane Calculus [6].
Our analysis can be used to statically verify causality properties of MBD systems and
could therefore help to understand the causal relationships among membranes interac-
tions. Specifically, the analysis can be applied to show that a reaction step does not
depend on another one. In this paper we have applied the analysis to simple MBD
systems that represent critical situations for environment causality, as explained in [4].

In future work, we plan to extend our causal analysis to the full Brane calculus [6].
Moreover, we would like to investigate the causal relations occurring among events in
biological pathways, such as the ones presented in [5,22].
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