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Abstract

In the realm of system biology, the study of regulatory networks leads biologists to the development
of increasingly large, detailed and complex models. These complex models, replicating the dynamics
of cell processes, are then analyzed using different approaches to obtain predictions. Genetic
oscillations play a main role in the activity of signal transduction by maintaining the cascade
of internal biochemical reactions with the extracellular environment. Molecular alterations in
the performance of such behavioral rhythms can lead to severe pathological problems, e.g. cancer.
Different formal approaches have been proposed to analyze Biological Regulatory Networks (BRNs)
Such approaches mainly involve the use of non-functional and Binary Decision Diagrams (BDDs)
based model checkers for the analysis of irregular structured BRNs, and dense time concept for
the modeling of BRNs. Computational Tree Logic (CTL) based analysis of BRNs is not suitable
for identifying cyclic (oscillatory) behaviors in irregular structures and the use of Linear Temporal
Logic (LTL) for the analysis of multistability is not viable. Morover, the reachability problem
becomes undecidable in case of dense time modeling. In order to address these issues, we use
delays and Minsky machines to observe the oscillatory behavior and to overcome the limitation
of LTL for the analysis of multistable states. To demonstrate our approach, we consider two
different case studies: Pseudomonas aeruginosa and P53-Mdm2 feedback loop.

1 Introduction

Cells are dynamic systems of complex interacting networks in which proteins,
genes and small regulatory molecules play together in a programmed manner
to perform multiple tasks in an organism. Genes are the informative subunits
of DNA and they decode instructions in form of proteins. When a gene is
switched on, information flows from genetic to proteomic level as a complex
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processes of transcription and translation. Some proteins have the function
of regulating the expression of genes by turning them on or off. This process
of interaction, between genes and protein regulatory elements, establishes a
Biological Regulatory Network (BRNs). BRNs often contain feedback loops
in order to impose a controled mechanism intended to maintain an optimal
concentration of proteins in a cell [19]. This make it difficult to predict the
dynamics (behaviors) of BRNs. The study of cellular dynamics is very crit-
ical for the understanding of intrinsically evolving morphological characters
involved in progression towards a disease state. As in case of the p53-mdm2
feedback loop, oscillatory behavior is considered as the major cause of cancer
initiation and progression.

A variety of formalisms have been proposed to analyze BRNs since 1960.
De Jong identifies ten different formalisms proposed in literature, which are
complemented with simulation techniques [11]. The proposed formalisms
include directed graphs, Bayesian networks, stochastic equations, boolean
networks and their generalizations, Ordinary/Partial Differential Equations
(ODEs/PDEs), and rule-based formalisms. These formalisms can be cate-
gorized into four main modeling frameworks, which include state of the art
quantitative modeling, qualitative modeling, hybrid modeling and Piecewise
Linear Differential Equations (PLDEs) based modeling.
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Fig. 1. Sigmoid curves showing the activation of y (below) and inhibition of x (above). The levels
0, 1, 2 represent the discrete (qualitative) concentrations and corresponding discrete abstraction of
sigmoid behavior.

Qualitative approaches include boolean logic and the Kinetic logic intro-
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duced by René Thomas. Boolean logic based modeling approach suffers from
different problems which limit their use in such analysis. For example, it only
deals with two levels, i.e., 0 and 1. Whereas considering the complexity of bi-
ological entities, their modeling demands more than two levels for accurately
capturing their dynamics. Kinetic logic is a multivalued logic, which allows us
to closely approximate the sigmoid nature (c.f. Fig. 1) of biological entities.

BRNs are often represented symbolically by biologists as directed graphs
or logical feedback circuits [6,17]. The behavior of these interactive graphs
and circuits is then analyzed in order to infer the dynamics of the system
[18]. A limitation of this modeling approach is that it does not facilitate the
understanding of network dynamics as the number of intertwined biological
entities increases.

Quantitative approaches based on differential equations (ODEs and PDEs)
have also been used extensively for the analysis of BRNs. Tyson et al. [20,21]
used coupled differential equations to model a complex network of protein
interactions that control the activities of cyclin-dependent kinases. They in-
troduced the notions of bifurcation and bistability in their model and their
results appear aligned with experimentation. Lev et al. [12] used a quanti-
tative approach (differential equation based modeling) to model the behavior
of the p53-Mdm2 loop. They analyzed the presence of oscillations (cyclic be-
havior) in the p53-Mdm2 feedback loop (which is important for keeping p53
function under tight control), and observed that the major dependence of os-
cillation period is on the delay in the p53-dependent induction of Mdm2.

The more accurate approximation of the sigmoid behavior of biological
entities is piecewise linear approximation (c.f. Fig. 2). PLDEs are used in
order to model the behavior of each entity. However, this approach requires a
large amount of data regarding metabolite concentrations. Moreover, for both
ODEs and PLDEs approaches, some of the required biological data may not
be available [9].

Recently, BRNs have been described as concurrent systems, which paves
the way for the application of formal verification techniques in the field of
systems biology [7,16]. Bernot et al. [5] have applied formal methods to the
field of system biology. Their contributions includes the formal representation
of BRNs as asynchronous system of interacting biological entities in the BDD
based functional model checker SMV and specification of biological properties
in Computational Tree Logic (CTL). Finally they applied their approach to a
case study: th analysis of mucus production in Pseudomonas aeruginosa.

Two major problems exist regarding the use of formal verification tech-
niques in system biology: First, the use of CTL for the analysis of oscillatory
behaviors, whereas it is not effective to characterize cycles in a Kripke struc-
ture, and the use of LTL for the analysis of multistable states (LTL is based
on path formulas and cannot express that at some instant along any execu-
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Fig. 2. Piecewise linear approximation of sigmoid curves.

tion it would be possible to extend the execution in this or that way [13,4,14]).
Second, the use of a dense time concept for the modeling of real time systems
[14,8,2].

We extend the approach proposed by Rauf et al. [15], based on the explicit-
state functional model checker SPIN [10], using delays and Minsky machines
(c.f. Fig. 5)[22]. This enables us to analyze different oscillatory/multistable
state behaviors that are characterized by different set of delays. We use dis-
crete time to overcome the undecidability problem that occurs while using
dense time. The rest of the paper is organized as follows: Section 2 dis-
cusses the concepts of timed model, delays and Minsky machine in detail and
presents our extension to the approach by Rauf et al. [15]. Section 3 illus-
trates the validation of our work with the help of two biological case studies.
Section 4 describes the limitations of the proposed methodology. Section 5
summarizes the developed contributions and places them in the context of the
current use of formal verification techniques in the field of systems biology.

2 Modeling Approach

2.1 Model of a Biological Entity

In the context of the Check and Fire model [15], a biological entity (e.g.
protein or gene) may be considered as an automaton which receives an input
(level of predecessors) from interacting neighbors, changes its internal state in
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response to it, and produces an output depending on a unique threshold level
(Θ) (c.f. Figure 1). Formally, a set of m biological entities N can be expressed
as a set of interacting automata and each entity (Ai) may take any positive
value in a range. Any entity Ai may have any possible discrete concentration
levels.

N= {A1, A2..Am};
Ai = {0, ..ni} where i ∈ {1, ..m}

The possible states for the regulatory network A are then defined as the carte-
sian product of all interacting biological entities:

A = A1 × A2 × A3 × ...× Am

2.2 Modeling of Regulatory Interactions

An excitatory (resp. inhibitory) interaction (A1
+−→ A2) (resp. 〈A1

−−→ A2〉) is
active when a protein’s level is equal to or above a specific threshold level Θ.

We also associate a threshold (Θ12) to each interaction (A1
Θ12−−→ A2). Given an

excitatory (resp. inhibitory) interaction (A1
Θ12−−→ A2), A1 is called the activator

of A2 if A1 ≥ Θ12 (resp. A1 < Θ12) for the excitatory interaction (resp.
inhibitory interaction). Formally, an interaction between any two biological
entities (Ax and Ay) (c.f. Figure 2) is defined as follows:

Ax
Θxy−−→ Ay where Θxy ∈ {1, ..ni}

Ax, Ay ∈ N ; x, y ∈ {1, ..m}
Classical automata can model sequencing of actions in a regulatory net-

work. This temporal sequencing gives “no qualitative information about delays
between actions” [4]. It is therefore not possible to observe multistable states
corresponding to different delays. Contrary to the Kripke structure where
each state is labeled with a set of atomic propositions, in a labeled transition
system the transitions are labeled with single actions. In this research, the
concept of Kripke structure is used in the modeling of biological entities and
and extended by using Minsky machines to replicate the dynamics of Linear
Hybrid Automata (LHA). A Linear Hybrid Automata (LHA) is a modified
graph that is labeled with a finite set of clock variables, called clocks. Clocks
are different from usual variables, as their access is limited: clocks may only
be inspected, and reset to zero. After each transition clocks are reset to zero
and then start increasing their value implicitly as time progresses. Intuitively,
clocks can be considered as stopwatches that can be started and checked inde-
pendently of one another. Conditions on the values of the clocks are used as
enabling conditions (i.e., guards) of actions: only if the condition is fulfilled
is the action enabled and capable of being taken; otherwise, the action is dis-
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abled. Conditions which depend on clock values are called clock constraints
[3].

Definition 2.1 [Linear Hybrid Automata] LHA is a tuple H = 〈S, C, Act,
CC(C), ↪→, Inv, s0 〉 in which;

• S is a finite set of states ;

• s0 ∈ S is the initial state;

• C is a finite set of clocks;

• Act is a finite set of actions;

• CC(C) is a finite set of constraints over clocks;

• Inv: S → CC(C) is an invariant-assignment function which assigns con-
straints (over clocks) to corresponding states;

• ↪→⊆ S × CC(C)× Act× 2C × S;

In LHA edges of the graph are labeled with tuples (g, α, D ), where g ⊆
CC(C), which is a set of constraints over clocks, α ∈ Act is an action to be
performed if guards are satisfied and D ⊆ C a set of clocks. The interpretation

of s
g,α,D
↪→ s

′
is that an automaton can move from state s to state s

′
when clock

constraint g holds. Besides, when moving from s to s
′
, any clock in D is reset

to zero and action α is performed. Function Inv assigns to each state a state
invariant that specifies how long the system may stay there. For state s, Inv(s)
constrains the amount of time that may be spent in s. That is to say, location
s should be left before invariant Inv(s) becomes invalid. If this is not possible
— as there is no outgoing transition enabled — no further progress is possible.
The notion of time in LHA is dense and a clock may assume any rate in given
range (0–1). The concept of dense time becomes computationally complex
(there are infinite points in range (0–1)) as several clocks are associated with
the system. To overcome this limitation, we introduced the concept of discrete
time by using a 2-counter machine. A counter machine can have a set of control
states S: {s0, s1,...., sq}; and a set of constraints, which defines the rules for
transition from one control state to another, whereas s0 is the initial state of
the counter.

Definition 2.2 [2-Counter Minsky Machine] A 2-counter Minsky machineM
is defined as a mathematical function Ci as follows:
Ci: J(i)→J(i), where J(i) ⊂ N and i ∈ {1, 2}, such that it evolves according
to the following rules/constraints:

Ci(0) = 1;

Ci(|J(i)| − 1) = |J(i)| − 2, where |J(i)| represents the cardinality of J(i);
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Ci(k) ∈ {k+1; k−1} where 0 < k < |J(i)| − 1;

A Minsky machine with two counters, can jump to next state by hav-
ing an increment/decrement. As an example, Figure 3, shows the transition
of counters (C1(J(1)) and C2(J(2))) from one state to another under the
rules/constraints expressed above.

0 1 2

J(1)= {0, 1, 2}

J(2)= {0, 1, 2, 3}

0 1 2 3

Fig. 3. Example of counters: C1 such that J(1) = {0, 1, 2} and C1(1) = 2; C2 such that
J(2) = {0, 1, 2, 3}, C2(1) = 2 and C2(2) = 3.

We integrated the concept of 2-counter Minsky machine and delays (time
required to change the state of the system) (c.f. Figure 4) into the Check and
Fire model [15] to define Regulatory Network Transition System (RNTS).

2.3 Regulatory Network Transition System (RNTS)

A Regulatory Network Transition System (RNTS) is defined as a 6-tuple:
AM =(S, s0, Ci(J(i)), CC(Ci(J(i))), ↪→, δ):

• S is a finite set of states of regulatory network;

• s0 ∈ S is the initial state of automata;

• Ci(J(i)) is a 2-counter machine with values in N;

• CC(Ci(J(i))) is a set of constraints over the counters;

• ↪→ is a finite set of transition such that: ↪→⊆ (S×N×N)2 × CC(Ci(J(i)));

• δ is a finite set of transition rules which maps CC(Ci(J(i))) to set of tran-
sition ↪→;

We associate a 2-counter Minsky machine with each biological entity; one
counter controls the delay of activation (dpx) and the second counter controls
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the delay of inhibition (dnx) (c.f. Figure 4). Constraints over counters work
as guards over transitions ↪→ ⊆ (S × N × N)2 × CC(Ci(J(i))), a transition
from one control state to another control state is only fired when all guards
evaluate to true. The semantics of a transition in RNTS can be written as
follows:

• (s, c1, c2)
c1= dpx; dpx< dnx−−−−−−−−−−→ (s′, c′1, c2), Reset counters where s, s′ ∈ S, c′1 ∈

C1(J(1)) and c2 ∈ C2(J(2))

• (s, c1, c2)
c2= dnx; dnx< dpx−−−−−−−−−−−→ (s′′, c1, c

′
2), Reset counters where s, s′′ ∈ S, c1 ∈

C1(J(1)) and c′2 ∈ C2(J(2))

x

x+1

d
A(i)
+ d

A(i)
- t

x

x+1

d
A(i)
+ d

A(i)
- t

(a) (b)

Fig. 4. (a) actual evolution of a biological entity; (b) discrete model enriched with counter machines.

In regulatory network transition system, the biological machinery (Minsky
machine) controls (increase/decrease) the corresponding protein concentration
on the basis of activation/inhibition signals. We use two types of parameters
d+
Ai

(x) and d−Ai
(x), to represent the time delay required to change the expres-

sion level of a biological entity Ai from x to x + 1 and from x + 1 to x, as
shown in Figure 4. Then we add, to each biological entity Ai, a 2-counter
Minsky machine M (with counters (C1 and C2)) whose slope at state µ is
αAi

(µ). At a given state µ, if αAi
(µ) = +1 (resp.αAi

(µ) = −1), then, when
ci reaches d+

Ai
(µAi

) (resp. d−Ai
(µAi

)), the level of Ai becomes µAi
+ 1 (resp.

µAi
− 1) and finally counters c1 and c2 are reset. The extended framework is

given in Figure 5, sketches and summarizes the SPIN based formal analysis of
BRNs. The gray shaded boxes in this figure represent the main contributions
of the paper, which are fundamental for the analysis of oscillatory behaviors.

3 Case Studies

3.1 Timed Modeling of Pseudomonas Aeruginosa

Pseudomonas aeruginosa is a pathogen, which is found in different lung syn-
dromes such as cystic fibrosis. The main cause of the respiratory deficiency
in patients of cystic fibrosis is mucus production. The regulatory network
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Fig. 5. Extension of discrete modeling framework enriched with ∆i (delays) and M (counter
machines). For more details regarding our framework readers may refer elsewhere [15].

which controls the mechanism of mucus production is shown in Fig. 6. AlgU
is the main regulator of mucus production and it favors its own production
while another gene inhibits it. The regulatory network of mucus production
is simplified by a regulatory graph in Fig. 6, where x represents gene AlgU
(or its protein) and y represents the inhibitor protein of AlgU . To illustrate

x
0..2

y
0..1

-1

+1

+2

Fig. 6. BRN of Pseudomonas aeruginosa.

the effectiveness of our Regulatory Network Transition System (RNTS), we
apply it to the case study of Pseudomonas Aeruginosa to verify the constraints
over different behaviors (i.e. oscillations and steady stable states). The corre-
sponding hybrid model is shown in Fig. 7. Table 1 contains details about few
constraints and associated behaviors. The first constraint is satisfied when
the system behaviour is oscillatory. The first part of constraints (dpx0 < dpy0)
is responsible for transition (0,0)−→(1,0). The second part (dpx1 > dpy0) of
the first constraint switches the system as follows: (1,0)−→(1,1). Inhibitor of
gene AlgU is activated in state (1,1), which tends to regulate the concentra-
tion of AlgU to the minimal level (0), and system proceeds toward the state
(0,1). In state (0,1), the concentration level of gene AlgU (resource/activator
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Fig. 7. Hybrid model of P. aeruginosa (bold arrows represent transitions of the discrete model); tpx,
tpy(for activation)�tnx, tny (for inhibition) are Minsky machines associated with X and Y ; dpx0,
dpy0�dnx1, dny1 are the delays required to change the concentration of genes X and Y ; at a qual-
itative level 0–1�1–0 correspondingly; and dpx1 is the delay required to change the concentration
of gene X from level 1 to 2.

Constraint Satisfied Corresponding
behavior

(dpx0 < dpy0) ∧ (dpx1 > dpy0) YES Oscillation

(dpx0 < dpy0) ∧ (dpx1 < dpy0) YES Stable steady state

Table 1
Constraints and corresponding behavior

of gene Y) is below its threshold (+1), which minimizes the concentration
level of gene Y and system returns to its initial state (0,0). At any instance
of time, condition (dpx1 < dpy0) may cause the system to be in configuration
(2,0), a state in which AlgU favors its own production, and finally the system
leads toward the deadlock or disease state (2,1). Our results are in accordance
with Ahmad et al. [1], where the authors used a Hybrid model checking tool
(Hytech) to obtain the same results.

3.2 P53-Mdm2 Feedback Loop

Tumor suppressor p53 plays a crucial role in cellular damage or stress condi-
tions by arresting cell cycle or programmed cell death. It maintains molecular
integrity of the cell by controling the DNA damage that may lead to multiple
malignancies. Mutations in the p53 are known as universal trait in oncogenesis
for more than 50% human tumors [12]. In response to stress the p53 activity
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does not grow in a steady manner, but it fluctuates in oscillatory behavior to
maintain specific concentration of p53 in cell. These fluctuations are regulated
by the mdm2 regulatory gene, responsible for the stability of p53. The mdm2
concentration (itself) is controlled by p53 in an auto-regulatory manner (neg-
ative feedback loop). This negative feedback loop is extremely important for
the molecular oncological behavior of the cells in case of DNA damage. It is
reported that in case of mice, mutations in mdm2 cause death. Regardless of
this, if the activation of mdm2 exceeds a normal level, it can cause abnormal
suppression of p53 and thereby lead the system towards cancer progression
(without damaging gene p53). In this twofold affair mdm2 not only acts as
a repressor of p53 (as its transcriptional factor) but also manages p53 con-
centration by proteolytic degradation. On the other side, p53 performs as
a promoter of mdm2 for accelerating its production. Both these genes work
together in a circuit to form a strict control mechanism that regulates the
p53 responses in normal and stress conditions. Although the importance of
the p53-Mdm2 loop is widely recognized, the rules which govern its dynamics
need further elaboration. Figure 8 shows abstracted BRN involving the p53-
Mdm2 feedback loop. We applied our methodology to the BRN involving the
p53-Mdm2 feedback loop and analyzed its dynamics.

MDM2

Stress

P-53

+1_1

+1

_1

tpp53
tnp53

dpp53
dnp53

tpmdm2
tnmdm2

dpmdm2
dnmdm2

tpstress
tnstress

dpstress
dnstress

Fig. 8. BRN involving p53-Mdm2 feedback loop; tpstress, tpp53, tpmdm2(for activation)/ tnstress,
tnp53, tnmdm2 (for inhibition) are Minsky machines associated with Stress, P-53 and MDM2 ; dpp53,
dpmdm2 / dnp53, dnmdm2 are the delays required to change the concentration of Stress, P-53 and
MDM2 from qualitative level 0–1 / 1–0 correspondingly; dpstress / dnstress are the durations for
Stress signal.

3.3 Result and Analysis

P53 prevents the cell from damage due to genotoxic variations, which are re-
sponsible for cancer. The identification of physical conditions and genomic
aberrations, involved in the progression towards disease state, are very criti-
cal in the quest of unraveling carcinogenic mechanisms. The most significant
cyclic behavior of the p53-Mdm2 feedback loop was analyzed by applying our
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timed modeling approach. Obtained results confirmed the already examined
in vivo and in vitro behaviors of this mechanism (c.f. Fig. 9) [12]. The
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Fig. 9. Analyzed cyclic behavior using the timed modeling approach. Values appear in the following
order: Stress signal, P-53, Mdm2 respectively (bold arrows represent transitions of the discrete-time
model) [23].

oscillatory mechanism is not only involved in the behavior of switching on/off
gene p53 but also maintains the overall cellular concentration of active p53 in
tightly and orderly controlled fashion (under normal conditions). It was ob-
served that in response to stress signals the body reacts by generating repeated
pulses or signals (e.g cyclic/oscillatory behavior) for the problem fixation un-
til the damage is repaired effectively. The rapid induction of p53 in stress
response is vital for the disease control and any delay in this process affects
the period of oscillation. We observed that minor changes in delay (of P-53
induction from 4 to 8 time steps) may result in very large period of oscillation
(Table 2: Oscillation period increased from 112 time steps to 178 time steps).
Change in other delays (dpmdm2, dnmdm2, dpstress, dnstress) have negli-
gible effect on the period of oscillation. To the best of our knowledge, this is
the very first time that period of oscillation has been analyzed using a formal
approach rather than simulation. Table 2 shows how the period of oscillation
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Delays Period of Oscillation

dpp5301 = 4, dnp53 = 9,
dpmdm2 = 5, dnmdm2 = 9,
dpstress01 = 3;

112 time-steps (c.f. Fig 10)

dpp5301 = 8, dnp53 = 9,
dpmdm2 = 5, dnmdm2 = 9,
dpstress01 = 3;

178 time-steps (c.f. Fig 11)

dpp5301 = 4, dnp53 = 9,
dpmdm2 = 8, dnmdm2 = 9,
dpstress01 = 3;

123 time-steps (c.f. Fig 12)

Table 2
Effect of delays on period of oscillation: dpp5301 corresponds to the delay in change of

concentration level of P53 from 0 to 1 and dpmdm2 corresponds to the delay in change of
concentration level of Mdm2 from 0 to 1.

fluctuates corresponding to different changes in delays. The snapshots of the
verification procedures are given below as Figure 10, 11, and 12.

4 Limitations

Apart from all the benefits, our modeling approach also has some limitations in
terms of state space explosion and complexity. An explicit-state model checker
explores the state space of the system by running the model. In SPIN, if a
single channel or a local variable changes its value then the program (SPIN
model of the BRN) is considered to be in a new state, whether the whole
system (BRN) changes its state or not. Consequently, it may be difficult to
overcome the state space explosion as the number of intertwined biological
entities increases while dealing with the complex system. Our tesults show
how the state space of a BRN increases exponentially when a discrete model
is enriched with delays and counter machines (c.f. Table 3).

5 Conclusion and Future Work

We introdused a formalism based on the semantics of Regulatory Network
Transition System (RNTS) to analyze oscillatory behaviors of complex Bi-
ological Regulatory Networks (BRNs) and to overcome the problem of un-
decidability in the case of dense time modeling. The formalism is used to
model two different case studies: pseudomonas aeruginosa and a BRN in-
volving the p53-Mdm2 feedback loop. Code script and figures concerning
analysis are available for download [23]. Our results show that hybrid model-
ing based on the concept of discrete time paves the way for researchers to use
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Discrete Modeling Timed Modeling

Pseudomonas
aeruginosa

Pseudomonas aeruginosa
(dpx01=4, dpx12 = 6, dnx= 2,
dpy=4, dny= 5)

States = 12 States = 5009

Transition = 14 Transition = 9654

Memory = 2.539 Mb Memory = 3.027 Mb

Time = 0.3 sec Time = 0.4 sec

P53-Mdm2
Feedback-Loop

P53-Mdm2 Feedback Loop
(dpp5301=4, dnp53= 9, dpmdm2=8,
dnmdm2= 9, dpstress01=3;)

States = 11 States = 8311962

Transition = 13 Transition = 40633634

Memory = 1.53 Mb Memory = 1023.984 Mb

Time = 0.46 sec Time = 3 sec

Table 3
State space and time complexity information about discrete modeling and timed modeling.

this modeling framework for the analysis of infectious diseases and to make
predictions about future drug designs. Previously, simulation based analysis
has been used extensively for the observation of oscillatory behaviors, which
requires a lot of information regarding all unknown biological parameters (e.g.
post-translational modifications), whereas these are not yet available for all
organisms. The key advantage of our formal approach over simulation based
analysis is that it does not require any quantitative information regarding
biological parameters, and yet it provides important results with acceptable
cost in terms memory and time (4–5 minutes for the analysis of P53-Mdm2
feedback loop) as well as modeling effort excluding (98-lines of Promela code).
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7 Appendix

Fig. 10. 112 time-steps [23]
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Fig. 11. 178 time-steps [23]

Fig. 12. 123 time-steps [23]
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